Multimodal Language Models are Visual Imitation Learner for Fine-grained Actions

1Beijing Institute of Technology 2The University of Hong Kong 3Peking University

Abstract

Visual imitation learning (VIL) provides an efficient and intuitive strategy for robotic systems to acquire novel skills. Recent advancements in Vision Language Models (VLMs) have demonstrated remarkable performance in vision and language reasoning capabilities for VIL tasks. Despite the progress, current VIL methods naively employ VLMs to learn high-level plans from human videos, relying on pre-defined motion primitives for executing physical interactions, which remains a major bottleneck. In this work, we present VLMimic, a novel paradigm that harnesses VLMs to directly learn even fine-grained action levels, only given a limited number of human videos. Specifically, VLMimic first grounds object-centric movements from human videos, and learns skills using hierarchical constraint representations, facilitating the derivation of skills with fine-grained action levels from limited human videos. These skills are refined and updated through an iterative comparison strategy, enabling efficient adaptation to unseen environments. Our extensive experiments exhibit that our VLMimic, using only 5 human videos, yields significant improvements of over 27% and 21% in RLBench and real-world manipulation tasks, and surpasses baselines by more than 37% in long-horizon tasks.


Subtasks

open drawer

stack block

open oven

pick mango to plate

press button

open microwave

put tray in oven

turn on oven

sweep table

insert box

brush pan

spread sauce

pick toy to drawer

pour from cup to cup

clean pan

-->